General heavenly equation governs anti-self-dual gravity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Self-dual Lorentzian Wormholes in Teleparallel Theory of Gravity

We find the most general Self-dual Lorentzian Wormholes in a special class of teleparallel theory of gravitation. The spacetime of these wormholes is a static and it includes the Schwarzschild black hole, a family of naked singularity and a disjoint family of Lorentzian wormholes all of which have a vanishing scalar curvature R({}). The stability is studied using the equations of geodesic devia...

متن کامل

On self-dual gravity.

We study the Ashtekar-Jacobson-Smolin equations that characterise four dimensional complex metrics with self-dual Riemann tensor. We find that we can characterise any self-dual metric by a function that satisfies a non-linear evolution equation, to which the general solution can be found iteratively. This formal solution depends on two arbitrary functions of three coordinates. We construct expl...

متن کامل

The Prolongation Problem for the Heavenly Equation

We provide an exact regular solution of an operator system arising as the prolongation structure associated with the heavenly equation. This solution is expressed in terms of operator Bessel coefficients. 1991 MSC: 83C20,35A30,58G35,33C10.

متن کامل

Multi-Hamiltonian structure of self-dual gravity

We discover multi-Hamiltonian structure of the complex MongeAmpère equation (CMA) set in a real first-order two-component form. Therefore, by Magri’s theorem this is a completely integrable system in four real dimensions. We start with Lagrangian and Hamiltonian densities in real variables, a symplectic form and the Hamiltonian operator, that determines the Poisson bracket. We have calculated a...

متن کامل

Integrable Deformations of Self Dual Gravity

A proposal for constructing a universal nonlinear Ŵ∞ algebra is made as the symmetry algebra of a rotational Killing-symmetry reduction of the nonlinear perturbations of Moyal-Integrable deformations of D = 4 Self Dual Gravity (IDSDG). This is attained upon the construction of a nonlinear bracket based on nonlinear gauge theories associated with infinite dimensional Lie algebras. A Quantization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2011

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/44/15/155201